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ABSTRACT

From a tracking station of known geocentric location, the measurements
of the azimuth and elevation of a satellite at three instants of time ty ty tg
provide tracking data sufficient for a preliminary determination of the orbit
of the satellite about the earth. From such data, the components (in a geo-

centered inertial coordinate system) of the position vectors r ;2' x-'3(corres--|

1

ponding to ty t t3) of the satellite may be calculated and in terms of these

components, allzof the orbital elements may be expressed. In view of the
given positional data of the tracking station and the directional data of the
satellite's position, only the slant ranges Py» P, Py are needed to complete
the determination of the vectors ry. r,, rj. To solve for the slant ranges,
an iterative procedure is introduced whereby successive systems of linear
equations are solved whose solutions rapidly converge to Py: Py P3 Sub-
sequently, all of the orbital elements are easily computed. Fundamental
use is made of the formulas of Gibbs (see Reference) which provide approxi-
mate values of the ratios 823/813. BlZ/Bl3' in which Bij denotes the area

of the triangle bounded by the vectors ;i' rj, rj - i"i. The method has been
tested for accuracy by applying it to compute the orbital paramsa=ters of
many parameter families of hypothetical orbits. On comparing the com-
puted values of the orbital elements with the corresponding hypothetical
values, the differences were found to be exceedingly small. The average
machine time for computing all elements of an orbit was approximately

0. 05 minute.
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I. DYNAMICAL BASIS OF THE METHOD

A new method is introduced in the present paper for the determi-
nation of satellite qrbits (or missile trajectories) about a spherical

earth by means of angular measurements only.

Let s, p denote the vectors from a tracking station at time t to
the geocenter and the orbiting satellite, respectively. The satellite
position vector r relative to a geocentered inertial frame is therefore

defined by the vector equation
r=p-s (1)

Let p, p denote the slant range of the vehicle from the tracking
station and the unit vector in the direction of P, respectively, so that

Equation (1) may be written in the form

r=0p-s (2)

Let vector and scalar functions of t i=1, 2, 3 be denoted simply

S D(ti)= 0 .

Exceptions to the use of this notation will be the time intervals t, -t

np

by the use of the subscript i. Examples are s (ti)

ty - t, which will be denoted by Al ] AZ' respectively.

Expanding ;2 by means of a Taylor's series, we have in terms of

;l and its derivatives

"

- - - e LA
r2=r(tl+A1)=r1+r1A1+ vi + —% +—>7 +... (3)

On substituting the dynamical relation
. MY
= (4)

T
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into Equation (3), the equation becomes
3

= 4"\ - T4
r2=rll--sz- +l'lAl+-—6——+... (5)
1

Vector multiplying the members of (5) by ;l yields the equation

. A3
;l =(;lx?l)A + (r xr)-—6-+... (6)

Similarly, - A 3
;Zx;3=(r xr)A +(r xrz)-—6—-+... (7)

Because of constancy of angular momentum (;l x ?l = ;2 x—rz), the

following equation results from a combination of Equations (6) and (7),

P xT, Tyxi
'—A_l—"'—E;_"'
“(" "’) 4°  4° A 58
= [ ]+6[ 7 - ) +...} (8)
1 T T2

In view of Equation (5), the magnitudes r and r, (of ;l and ;2)
differ by terms of order a.t least A It follows that the right member
of (8) is of order A A 1f A f A 2 but it is of order A13 if

AZ Consequently, in ezther case, if Al and AZ are both small,.

the approximation results
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-8 %2 o

1

:
3 (9)
2

i

X x
a a
Let Aij denote the area bounded by two position vectors ;i’ ;j and that
portion of the orbit between ;i' ;j » 4, =1, 2, 3, 1i<j and let Bi-j

denote the area of the triangle bounded by the vectors ;i' ;j’ rj -r..
The constancy of the rate of description of area assures that AIZ/AI =
A23/AZ. From (9), BIZ/AI = Bz3/A2. The accuracy of (9), therefore
depends upon how closely the ratio A12/A23 is approximated by the
ratio 812/823. Closed form expressions for the ratios AIZ/AZ'J and
By2/Bps e Sppan
anomaly angles associated with the positions of the vectors Ty» Ty Tg.

can be derived in terms of orbit eccentricity and the eccentric

They are

EZ - El - e(sin Ez - sin El)

Ay, - E3 - EZ - e(sinT_., - sin E))

(10)

12 sin (EZ-EI)-e(sm Ez-smEl)

B
-523 = sin (E3 -TZ) - e (sin E;- sin E;)' (11)

where

a2 (1 - e2)1/2
2

. [E.-E.-e(sinE.-sinE.)].
ij J 1 J ¥

i a2(1 - )12
ij 2

i, j=1, 2, 3;isj.

[sin (Ej - Ei) - e (sin Ej - sin Ei) ].
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Moreover
22 (1 - a3yM/2
A - By = - lEj - E; - sin(E; - Ei)l (12)
2 2.1/2
a (1 -e) - 3
S 12 (B = Ep)

Suppose that, from a tracking station, angular measurements are made
of the line of sight to an orbiting vehicle at times tl' tZ' ts. From these
measurements, the inertial components of the corresponding unit vectors

}.31. 1.)2. 1.)3 may be determined. The corresponding system of equations

r.=p P -8 (i=1, 2, 3) (13)
may be written, in which the six vectors f)i, §i (i=1, 2, 3) are known.
To solve for the unknowns Py» Py P53, use is made of Equation (9)

together with the equation obtained from (9) by making the substitution

rpr, 4, 4,
o (14)
rp T3 43-4,
where A3 = Al + AZ' e.g.,
§le3 . §-3x§-2 . I-Zx?3
8, &, 5, (15)
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Since the vectors ;l' r, rjyare coplanar, constants Cpp € C

such that

exist,

3

cy Ty teprytcy r3=0 (16)
Vector multiplications of Equation (16), first by ;2 and then by ;3.
yield in virtue of (9) and (15) (for the equality sign) <y A 1 < €3 AZ'

c, &

837 - ¢, AZ’ so that (16) assumes the form

AZ rl-(Al+A2)r2+Alr3=0 (17)
Substituting from Equation (13) into Equation (17) yields the vector

equation
8,P Py = (8 + 80P, Py + BiP3P3 = 45| - (8 + 8))s, + 453 (18)

The system of equations obtained from the components of vector Equation
(18) possesses a unique solution Py Py P if and only if the determinant
(p 1’ f)z, }-)3) # 0, and not all of the components of the vector AZ s, -

1
(Al + AZ) §2 + A] §3 vanish. The solutions assume the forms

_ (ar I-)Zv 1-33) ~ ‘AZ (i-)l' 8’ 133) ~ AZ (I-)lu }-)2' a) (19)
p = D » P2~ &5 ' P3° T3 D

in which Aza = A2§1 - 2, 52 + Al§3. D= (;31, 52. 53). The condition
of the vanishing of 0 for non-vanishing values of Al' AZ implies that
the three positions of the tracking station corresponding to the times
ty t, tjare collinear. This can happen on the surface of the earth

only if the tracking station is fixed in inertial space (i. e., s (tl) =

s (tz) = s (t3)). The only points where this could occur are at the poles.
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Substituting the calculated values for P: Py Py (from (19)) into
Equations (13) and performing the indicated arithmetic operations

results in the numerical values of the components of the vectors ;l'

r, r
2" 3
terms of these. In fact, if Oi denotes the angle from the line of

The orbital elements in turn can be easily calculated in

intersection of the orbit plane and the z = 0 plane to the vector ;i

(oriented so that Ol < 02) it may be easily shown that

72 i=1, 2, 3) (20)

o - cog-l l'( P (Fypx Ty, 4 (T, () x ;2)1|
] = COSs ’ (1

- - 2 - - 2
r. '(rl X rZ)l + (rl X rz)2 l

in which r. denotes the magnitude of ;i and a subscript j (j = 1, 2)
following a vector enclosed in parentheses signifies the jth component
of the vector. Moreover, the equation of the orbit may be written

in the form

-;l;=A+BcosO+CsinO (21)

in which A = 1/a (1 - ez); B = e cos Op/a (1 - ez); C = e sin 9p/a (1 - ez).
Substituting into Equation (21) the values for 01, 02, 03 given by (20) and
the values for ry Ty Ty, three linear equations in A, B, C result
which can be readily solved. Moreover, if 1 denotes the angle from the
x-axis to the line of nodes, the elements a, e, Op. il are expressible

by means of the formulas

) o _(Bz+cz)1/2
as=-—y y) 2 €= '
A°- (B + C°) A
-1C .1 (raxrp)y

Op = tan B 1 = tan ﬁ,l—x—:_—z-)—z' (22)
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II. HIGHER ORDER APPROXIMATIONS

The accuracies of Equations (9) and (15) are generally improved by
reducing the time intervals between successive observations. Equation
(9) becomes exact for circular orbits if ﬁ = AZ For near circular

orbits it is therefore advantageous to choose Al = AZ'

The method of this paper can be modified so that it can be satis-
factorily applied to cases in which the time intervals A 1 AZ are much
larger than formerly admissable, by making use of equations derivable
from the formulas of Gibbs (see Reference) for the ratios of the
triangular areas. In the terminology of this paper these equations are to

third order terms

B
] .E_[1+J‘—A(A r o)+ B -1_3-_13(A1A3-A§)+...]
B13 1. T2
B b
12 _ “ B
2 (24)

& _13 -..13, -;Z- (8, 8, - 8T ) +. . .
rl 1'2 1

Equations (9) and (15) are first order approximations of the exact

equations
?leZ_PZx;3=;lx§3 o
IlZ BES E13
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in which the principal parts of the ratios 823/813, BIZ/BI3 are
employed. It follows that if good estimates of r,, r,can be found,
the substitutions of the ratios 812/823, BZ3/B13 (defined by (24))
for AI/AZ' AZ/A3 in the right members of Equations (19) will lead
to much more accurate positional determinations. The following
iterative process serves to determine good "initial estimates" of
r, T, Since r, t r, ¢ i'l Al it follows that l/r:: - l/rg = 3i'lAl/r‘:.
Consequently, the third terms of the right members of Equation

» %* *
(24) are of third order in the A's. Let B 13’ BlZ’ 823 be defined
such that
%
B
23 _ AZ n
— = 5 1+—3A1(AZ+A3)]
B 3 6r
13 2
(26)
%
Piz_ 4 1+ K (8, + 4,)
o5 B, o3 %216 1850
13 2
Select an estimate pf of the slant range P, and calculate the
corresponding value r, (1 by means of the equation
1 1) - -
S EUE P (27)

% 3%
Substitute r, = rz(l) in Equation (26) and calculate the ratios (B, 3/B 3)(1).

(B /B 3)( ). The f1rst and second equations of (19) with A /Az and

*
A2/A3 replaced by (B /B23)(l) and (B23/Bl3)( ), respectively, yield
computed values for pl and P, say pl( ) pZ(Z). Thus

“)



(1) - - * \(1) = =(1) -
(2) _ (0 ’ Pz' p3) (2) ~ B23 (Pl. o ’ P3)
Py = ») P B*. »)
13
in which D = (;‘:l. Py 53) and
* \ (1) » (1)
s g (21 N (it :
1 B 2 ?“ 3
23 23

These slant range values are then used to calculate the corresponding

values rl(z), rz(z) by means of the ~quations

SRR A A P e

1(2), rz(z) are then substituted in Equation (24) to
. . . (2) (2)
determine ratios which are denoted by (BIZ/B23) and (523/Bl3) "

The values r

This iteration process is continued making use of Equations (28),
(29), (24) until the differences (B ,/B,;)) - (B ,/B, )0 * 1) and

j i+ 1 . .
(B23/B13)(J) - (B23/B13)(J ) become negligible. The values of the
ratios BIZ/B23’ B23/Bl3' thus determined are used for the final
determinations of the slant ranges Py Py Py and position vectors

r; ;2. ;'3 by means of the equations

o (on pzv P3) o '323 (Pl. o, P3)
1 D 2 Bl3 D
- B23 (Pl' pzr o)

3 B12 D

in which

Page 9

(28)

(29)
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c = s, - °13 5, + C12 8
1 823 2 823 3
and
r. = pi p, -8 , 1 = 1,2,3 (31)

III. RESULTS OF DOUBL¥Y PRECISION COMPUTATIONS OF ORBITS;

SCOPE AND ACCURACIES OF THE DETERMINATI ONS

The method of orbit determination was programmed for double pre-
cision computation on a digital computer. The means of testing the accu-
racies of the method consisted of computing the orbits (all of the orbit
parameters) of various hypothetical orbits by using directional data,
times of observation, and known positions of tracking stations, and com-
paring the computed results with the corresponding hypothetical values.
A great multiplicity of hypothetical cases were considered in which the

elements B, w, a, e, 6 92, 6., 6, a were selected from the following

systems 8 = 5°, 15°, ;.5°, 35°3, p 90°%; w =4°, 12°, 20°, 28°, ..., 68°;
a = 3922. 33, 4443.94, ..., 16,000 nautical miles; e = 0, 0.0125, 0. 0150,
..., 0.85; (8,,6,, €, = (6°, 6.53°, 7.07%, (18°, 18.53°,19.07%, ...,
(102°, 102.530, 103.07°), ..., (0°, 2° 49, ..., (0° 5° 6°9; ¢ = -24°,
-12°, 0°, 12°, 24°, ..., 60°% a =10(j-1), j=1,2,3, ..., 13. The sym -

bols, a,e have their usual connotation, B8, w denote latitude angle and the
angle between the line of ascending node and the meridian plane of the
tracking station at the time of the initial observation; Gp is the true
anomaly angle of perigee, Gl, 62, 93, are the true anomaly angles of the
satellite positions which correspond to times tl 5 tZ’ ts and a is the in-
clination angle of the orbit plane. In addition to the multiplicity of cases
enumercted, similar systems of cases were considered which are near
to a critical case. The critical case, in which the method is not applic-
able, occurs when the vectors from the tracking station to the three

positions observed at tl' ts t, are coplanar. In each of the cases which
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will be termed a near-critical case, the tracking station lies in the orbit
plane at the time of one of the three observations. The accuracies of the
results pertaining to the near-critical cases are significant because many
of these cases were found to require double precision computations. The
accuracies of the cases which are not near-critical are generally better
than those of the near critical cases. But even for the near-critical cases,
the differences between the hypothetical values of the elements and the
values computed (from the observations) are very small. It will suffice,
therefore, for the purpo-es of this report to describe the findings which
pertain to the near-critical cases. Multiple parameter families of such

cases were considered in which the ranges for the elements were as

follows: 8 = 10°, 20°, ..., 90°% a =10°, 20°, ..., 120°%; w =sin"! (tan B
cot Q); 9l i (sin 8 csc a); Op = -24°%, -12°, 0°, ..., 60°; 92 = 61 +
0.53% 0, =8, 40.54% a = 3922.33, ..., 16,000 nautical miles; e =0 ,
0.0125, 0.0150, ..., 20.

The accuracies of the orbit determinations are, in general, better

than those of the following typical near-critical cases:

Actual Orbit Data Computed Orbit Data
Case (1): a = 30° a = 29.999952°
a = 3922,.32999 n. mi. a = 3922.2483 n. mi.
e = 0.03 e = 0.029984383
o, - -24° o, = -24.01641°
5, = 403.359695n. mi. o, = 403.58686 n. mi.
5, = 405.10132n. mi. p, = 405.09120 n. mi.
p; = 409.15499 n. mi. o, = 409.14477 n. mi.
o, = 6° 8, = 6.000095°
0, = 6.53° 6, = 6.530084"

7.070072°

0, = 7.07° 0
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Case (2): a = 10° & = 10.000069°
a = 3922.32999n.mi. a = 3922.2591 n.mi.
= 0.03 e = 0.029986499
Py = 914.40702 n.mi. p, = 914.385 n.mi.
DZ = 922.4266 n. mi. OZ = 922.4048 n. mi.
93 = 931.58933 n. mi. p3 = 931.5673 n. mi.
e = -12° 8 = -12.01017°
P o P o
o, = 18 6, = 18.001388
e, = 18.53° 0, = 18.531377°
0, = 19.07° 0, = 19.071367°
Case (3): a = 20° a = 20.000279°
a = 3922.32999n.mi. a = 3922.2658 n. mi.
e = 0.03 e = 0.029988690
p, = 157.92217 n.mi. p, = 157.91886 n.mi.
p2 = 158.42123 n. mi. p2 = 158.4179 n. mi.
p; = 158.98764 n.mi. Py = 158.9843 n.mi.
e = 12° @ = 11.991499°
p O p o]
o, = 42 8, = 42.000836
6, = 42.53° 0, = 42.530828°
8, = 43.07° 0, = 43.070818°
Case (4): a = 120° a = 120.000165°
a = 3922.32999n.mi. a = 3922.3517 n.mi.
e = 0.03 e = 0.030003371
Py = 2636. 2154 n. mi. I 2636. 2390 n. mi.
p, = 2650.1334 n.mi. o, = 2650.1571 n.mi.
p, = 2664.5699 n.mi. Py = 2664.5938 n.mi.
e = 12° @ = 11.998896°
p (o] p o]
o, = 42 0, = 41.999988
o, = 42.53° 0, = 42.529991°
0, = 43.07° 0 = 43,069993°
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Case (5): a = 40° @ = 39.999986°
a = 3922.32999 n.mi. a = 3922.4432 n.mi.
= 0.01 e = 0.010020000
p, = 779.80816 n.mi. p, = 779.80865n.mi.
p, = 806.28246 n.mi. p, = 806.28279 n.mi.
Py = 833. 64203 n. mi. ST 833, 64220 n. mi.
0 = 60° @ = 60.118205°
P 5 P o
e, = 100 8, = 99.999972
e, = 100. 53° 8, = 100. 529970°
0, = 101.07000° 8, = 101. 069968°
Case(6): a = 30° @ = 29.999986°
a = 16000 n. mi. a = 15999, 892 n. mi.
e = 0.05 e = 0.049994933
pl = 11853.595 n. mi. pl = 11853.585 n. mi.
p‘2 = 11857.068 n. mi. DZ = 11857.057 n. mi.
03 = 11860. 802 n. mi. 93 = 11860. 792 n. mi.
8 = -20° @ = -20.00322°
P o P o
e, = 10 0, = 9.999997
0, = 10. 53° 0, = 10.59997°
0, = 11.07° 0, = 11.069997°
Case (7): a = 30° a = 30.000009°
a = 16000 n. mi. a = 16001.358 n. mi.
e = 0.30 e = 0.30005244
pl = 8113.3207 n. mi. Dl = 8113.3793 n. mi.
Py = 8126. 2608 n. mi. Py = 8126.3195 n. mi.
03 = 8139.9188 n. mi. p3 = 8139.977 n. mi.
8 = -20° @ = -20.003833°
p o P o
o, = 10 o, = 9.99999
e, -= 10. 53° o, = 10. 529991°
e, = 11.07° 0, = 11.069992°
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Case (8): a = 30° a = 30.000001°
a = 16000 n.mi. a = 16002.093 n.mi.
= 0,45 e = 0,45006593
p, = 5737.7629 n.mi. p, = 5737.8192 n.mi.
p, = 5751.7785 n.mi. p, = 5751.8349 n.mi.
GRS 5766. 6526 n. mi. Py = 5766. 7091 n. mi.
o, = 20° 8, = -19.99675°
o, = 10° o, = 9.999990°
6, = 10. 53° o, = 10.529991°
0, = 11.07° 0, = 11.069992°
Case (9): o = 30° o = 30.000021°
a = 16000 n.mi. a = 16003, 720 n. mi.
= 0.60 e = 0.60008761
p, = 3294.5488 n.mi. p, = 3294.6052 n.mi.
Py = 3307.1798 n. mi. pz = 3307. 2364 n. mi.
p; = 3320.7864 n.mi. p, = 3320.8432 n.mi.
e = -20° 8 = -19.99711°
e‘: = 10° ef = 9.999987°
o, = 10. 53° 8, = 10. 529990°
0, = 11.07° 8, = 11.069994°
Case (10): a = 30° a = 29.999965°
a = 16000 n. mi. a = 15998.423 n. mi.
e = 0, 80 e = 0.79998041
Py = 41.443169 n. mi. Py = 41.442664 n. mi.
p, = 44.263139 n.mi. p, = 44.262486 n.mi.
03 = 65.061448 n. mi. Py = 65.060481 n.mi.
e = -20° @ = -20.00039°
91: = 10° eT = 10.000003°
6, = 10.53° 0, = 10. 529995°
0, = 11.07° 0, = 11.069987°

4



Case (11):

Case (12):

v 0 P A

30°

-16000 n.mi.
1.50

12143, 289 n. mi.
12169. 763 n. mi.
12197.176 n. mi.
10. 0000°

10. 5300°
11.0700°

30°

-16000 n.mi.
20. 0000
351905. 91 n. mi.
353663. 25 n. mi.
355449. 83 n. mi.
10. 000°

10. 5300°
11.0700°

29.999979°

-15998. 314 n. mi.

1. 5000575
12143.362 n. mi.
12169. 836 n. mi.
12197. 248 n. mi.
9.999996°

10. 529995°
11.069995°

29. 99990°

-15997. 779 n. mi.

20. 002653
351905. 91 n. mi.
353663. 25 n. mi.
355449. 83 n. mi.
9.999992°
10.529993°
11.069992°

Page 15
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APPENDIX

Figure 1. Geometry Relating Local Direction Angles of a Sattelite
Position Vector Si l:”i to the Direction Cosines, in
Inertial Coordinates, of the Unit Vector f)i = Sipi/ lsiﬁiI'

The vectors f)i (i =1, 2, 3) employed in Equation (19) have been
referred to a geocentered inertial coordinate frame. Direction angles of the
vectors i;i will, however, be observed with reference to the horizontal
plane through Si and a vertical vector Gi (see Figure 1). Let )\i
denote the angle formed by the orthogonal projection of the unit vector
f)i on the horizontal plane through Si and the east direction through
Si (if 0 < Ki < n/2 the bearing of S, Q. is northeasterly). Let M, denote

the elevation angle of the line of sight Si Pi above the horizontal plane
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at Si' The direction angles_Ai. ,“i v&iill be observed (measured) with
respect to the unit vectors gi. n;. Ci originating at Si directed in the
east, north, and vertical directions respectively. Let Vir bi denote
the colatitude and longitude of the location Si with respect to the
inertial frame. As defined in Section I, §i * ‘S_IT) Let the inertial
components of -§i be denoted by X Yy 24 It follows from the

geometry of Figure | that

x, = R sin v, cos bi, y; © R sin v; sin bi, z, = R cos v, (34)

The unit vectors ﬁi, ‘;7i, -Ci can be expressed in terms of inertial

coordinates by means of the equations

L. S . (35)
s i T T (=T
|si| lsi||8i| ‘s'

in which the dot above the symbol denotes differentiation with respect
to time t. As t varies, Si moves (due to the earth's angular rotation
rate ) in a constant latitude circle such that the components of - E'i
are given by
ki = - Rp sin v, sin 6i’ ¥, = R # sin Y, cos bi, 2, = 0. (36)
The inertial components of the vectors -éi' ;7i’ Ci can now be readily

calculated by means of Equations (34) through (36). The results are

found to be

€i1 = - sin bi’ giz = cos bi, £i3 =0
nil = = COSs Ul cos bip nizz = Sinbi COs Vi, ni3 = sin Vi (37)
Cil = sin 1, cos bi’ ciZ = sin ¥, sin 6i. (i3 = cos

A A
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From the definitions of the direction angles Ai. H, it follows that the

vector f)i is given by
f)i = (cos H; cos /\i) Ei + (cos Ky sin )\i) ;’i + (sin ui) Ei (38)

The inertial components of the vector f)i are found by substituting from

Equations (37) into Equation (38) to be

.. = -COS M. cos A. sind. - cos 4. sin A, cos V. cos b.
Pi “1 i i “1 i i i

i in V. cos &,

+ sin ui I W 3
pP.,=COs 4. cos A, cos b, - cos M, sin A, sin ., cos v (39)
12 i i i i i i i

+ sin My sin v sin 61.

R . sl .sin V. + sin u.. cos V,
P;3 os M, sin ), i o i

Equations (39) provides the means of calculating the input data pij
required by the method. Knowledge of the tracking station locations
(in inertial space) at the instants of time ty ty tg furnishes the
values of 6. , v, i =1, 2, 3. The measurements of the observed
local angles Ky /\i furnish the remaining required data. The angle

from the x-axis (of the inertial coordinate system) to the line of

nodes is given by () = 61 - w,
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